High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks

نویسندگان

  • Krzysztof Geras
  • Stacey Wolfson
  • S. Gene Kim
  • Linda Moy
  • Kyunghyun Cho
چکیده

Recent advances in deep learning for object recognition in natural images has prompted a surge of interest in applying a similar set of techniques to medical images. Most of the initial attempts largely focused on replacing the input to such a deep convolutional neural network from a natural image to a medical image. This, however, does not take into consideration the fundamental differences between these two types of data. More specifically, detection or recognition of an anomaly in medical images depends significantly on fine details, unlike object recognition in natural images where coarser, more global structures matter more. This difference makes it inadequate to use the existing deep convolutional neural networks architectures, which were developed for natural images, because they rely on heavily downsampling an image to a much lower resolution to reduce the memory requirements. This hides details necessary to make accurate predictions for medical images. Furthermore, a single exam in medical imaging often comes with a set of different views which must be seamlessly fused in order to reach a correct conclusion. In our work, we propose to use a multi-view deep convolutional neural network that handles a set of more than one highresolution medical image. We evaluate this network on large-scale mammography-based breast cancer screening (BI-RADS prediction) using 103 thousand images. We focus on investigating the impact of training set sizes and image sizes on the prediction accuracy. Our results highlight that performance clearly increases with the size of training set, and that the best performance can only be achieved using the images in the original resolution. This suggests the future direction of medical imaging research using deep neural networks is to utilize as much data as possible with the least amount of potentially harmful preprocessing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.07047  شماره 

صفحات  -

تاریخ انتشار 2017